Architecture: The Engine Room

Hrishi Olickel & Claude Opus 4·

Architecture: The Engine Room

The tt Control Loop: The Beating Heart

The entire Claude Code system revolves around a single async generator function called tt. This function orchestrates every interaction, from user input to LLM communication to tool execution. Let's dissect this remarkable piece of engineering:

TSX
// The actual tt function signature from the codebase async function* tt( currentMessages: CliMessage[], // Full conversation history baseSystemPromptString: string, // Static system instructions currentGitContext: GitContext, // Real-time git state currentClaudeMdContents: ClaudeMdContent[], // Project context permissionGranterFn: PermissionGranter, // Permission callback toolUseContext: ToolUseContext, // Shared execution context activeStreamingToolUse?: ToolUseBlock, // Resume streaming state loopState: { turnId: string, // UUID for this turn turnCounter: number, // Recursion depth tracker compacted?: boolean, // History compression flag isResuming?: boolean // Resume from saved state } ): AsyncGenerator<CliMessage, void, void>

This signature reveals the sophisticated state management at play. The function yields CliMessage objects that drive UI updates while maintaining conversation flow. Let's examine each phase:

Phase 1: Turn Initialization & Context Preparation

TSX
{ // Signal UI that processing has begun yield { type: "ui_state_update", uuid: `uistate-\${loopState.turnId}-\${Date.now()}`, timestamp: new Date().toISOString(), data: { status: "thinking", turnId: loopState.turnId } }; // Check context window pressure let messagesForLlm = currentMessages; let wasCompactedThisIteration = false; if (await shouldAutoCompact(currentMessages)) { yield { type: "ui_notification", data: { message: "Context is large, attempting to compact..." } }; try { const compactionResult = await compactAndStoreConversation( currentMessages, toolUseContext, true ); messagesForLlm = compactionResult.messagesAfterCompacting; wasCompactedThisIteration = true; loopState.compacted = true; yield createSystemNotificationMessage( `Conversation history automatically compacted. Summary: \${ compactionResult.summaryMessage.message.content[0].text }` ); } catch (compactionError) { yield createSystemErrorMessage( `Failed to compact conversation: \${compactionError.message}` ); } } }

Performance Profile of Phase 1:

OperationTypical DurationComplexity
Token counting10-50msO(n) messages
Compaction decision<1msO(1)
LLM summarization2000-3000msOne LLM call
Message reconstruction5-10msO(n) messages

Phase 2: Dynamic System Prompt Assembly

The system prompt isn't static—it's assembled fresh for each turn:

TSX
{ // Parallel fetch of all context sources const [toolSpecs, dirStructure] = await Promise.all([ // Convert tool definitions to LLM-compatible specs Promise.all( toolUseContext.options.tools .filter(tool => tool.isEnabled ? tool.isEnabled() : true) .map(async (tool) => convertToolDefinitionToToolSpecification(tool, toolUseContext)) ), // Get current directory structure getDirectoryStructureSnapshot(toolUseContext) ]); // Assemble the complete system prompt const systemPromptForLlm = assembleSystemPrompt( baseSystemPromptString, // Core instructions currentClaudeMdContents, // Project-specific context currentGitContext, // Git status/branch/commits dirStructure, // File tree toolSpecs // Available tools ); // Prepare messages with cache control const apiMessages = prepareMessagesForApi( messagesForLlm, true // applyEphemeralCacheControl ); }

The assembly process follows a strict priority order:

Text
Priority 1: Base Instructions (~2KB) Priority 2: Model-Specific Adaptations (~500B) Priority 3: CLAUDE.md Content (Variable, typically 5-50KB) Priority 4: Git Context (~1-5KB) Priority 5: Directory Structure (Truncated to fit) Priority 6: Tool Specifications (~10-20KB)

Phase 3: LLM Stream Initialization

TSX
{ // Initialize streaming call const llmStream = callLlmStreamApi( apiMessages, systemPromptForLlm, toolSpecificationsForLlm, toolUseContext.options.mainLoopModel, toolUseContext.abortController.signal ); // Initialize accumulators for streaming response let accumulatedAssistantMessage: Partial<CliMessage> & { message: Partial<ApiMessage> & { content: ContentBlock[] } } = { type: "assistant", uuid: `assistant-\${loopState.turnId}-\${loopState.turnCounter}-\${Date.now()}`, timestamp: new Date().toISOString(), message: { role: "assistant", content: [] } }; let currentToolUsesFromLlm: ToolUseBlock[] = []; let currentThinkingContent: string = ""; let currentToolInputJsonBuffer: string = ""; }

Phase 4: Stream Event Processing State Machine

This is where the magic happens—processing streaming events in real-time:

TSX
{ for await (const streamEvent of llmStream) { // Abort check if (toolUseContext.abortController.signal.aborted) { yield createSystemNotificationMessage("LLM stream processing aborted by user."); return; } switch (streamEvent.type) { case "message_start": accumulatedAssistantMessage.message.id = streamEvent.message.id; accumulatedAssistantMessage.message.model = streamEvent.message.model; accumulatedAssistantMessage.message.usage = streamEvent.message.usage; yield { type: "ui_state_update", data: { status: "assistant_responding", model: streamEvent.message.model } }; break; case "content_block_start": const newBlockPlaceholder = { ...streamEvent.content_block }; // Initialize empty content based on block type if (streamEvent.content_block.type === "thinking") { currentThinkingContent = ""; newBlockPlaceholder.thinking = ""; } else if (streamEvent.content_block.type === "tool_use") { currentToolInputJsonBuffer = ""; newBlockPlaceholder.input = ""; } else if (streamEvent.content_block.type === "text") { newBlockPlaceholder.text = ""; } accumulatedAssistantMessage.message.content.push(newBlockPlaceholder); break; case "content_block_delta": const lastBlockIndex = accumulatedAssistantMessage.message.content.length - 1; if (lastBlockIndex < 0) continue; const currentBlock = accumulatedAssistantMessage.message.content[lastBlockIndex]; if (streamEvent.delta.type === "text_delta" && currentBlock.type === "text") { currentBlock.text += streamEvent.delta.text; yield { type: "ui_text_delta", data: { textDelta: streamEvent.delta.text, blockIndex: lastBlockIndex } }; } else if (streamEvent.delta.type === "input_json_delta" && currentBlock.type === "tool_use") { currentToolInputJsonBuffer += streamEvent.delta.partial_json; currentBlock.input = currentToolInputJsonBuffer; // Try parsing incomplete JSON for preview const parseAttempt = tryParsePartialJson(currentToolInputJsonBuffer); if (parseAttempt.complete) { yield { type: "ui_tool_preview", data: { toolId: currentBlock.id, preview: parseAttempt.value } }; } } break; case "content_block_stop": const completedBlock = accumulatedAssistantMessage.message.content[streamEvent.index]; if (completedBlock.type === "tool_use") { try { const parsedInput = JSON.parse(currentToolInputJsonBuffer); completedBlock.input = parsedInput; currentToolUsesFromLlm.push({ type: "tool_use", id: completedBlock.id, name: completedBlock.name, input: parsedInput }); } catch (e) { // Handle malformed JSON from LLM completedBlock.input = { error: "Invalid JSON input from LLM", raw_json_string: currentToolInputJsonBuffer, parse_error: e.message }; } currentToolInputJsonBuffer = ""; } yield { type: "ui_content_block_complete", data: { block: completedBlock, blockIndex: streamEvent.index } }; break; case "message_stop": // LLM generation complete const finalAssistantMessage = finalizeCliMessage( accumulatedAssistantMessage, loopState.turnId, loopState.turnCounter ); yield finalAssistantMessage; // Move to Phase 5 or 6... break; } } }

Stream Processing Performance:

  • First token latency: 300-800ms (varies by model)
  • Token throughput: 50-100 tokens/second
  • UI update frequency: Every token for text, batched for tool inputs
  • Memory usage: Constant regardless of response length

Phase 5: Tool Execution Orchestration

When the LLM requests tool use, the architecture shifts into execution mode:

TSX
{ if (finalAssistantMessage.message.stop_reason === "tool_use" && currentToolUsesFromLlm.length > 0) { yield { type: "ui_state_update", data: { status: "executing_tools" } }; let toolResultMessages: CliMessage[] = []; // Process tools with intelligent batching for await (const toolOutcomeMessage of processToolCallsInParallelBatches( currentToolUsesFromLlm, finalAssistantMessage, permissionGranterFn, toolUseContext )) { yield toolOutcomeMessage; if (toolOutcomeMessage.type === 'user' && toolOutcomeMessage.isMeta) { toolResultMessages.push(toolOutcomeMessage); } } // Check for abort during tool execution if (toolUseContext.abortController.signal.aborted) { yield createSystemNotificationMessage("Tool execution aborted by user."); return; } // Sort results to match LLM's request order const sortedToolResultMessages = sortToolResultsByOriginalRequestOrder( toolResultMessages, currentToolUsesFromLlm ); // Phase 6: Recurse with results yield* tt( [...messagesForLlm, finalAssistantMessage, ...sortedToolResultMessages], baseSystemPromptString, currentGitContext, currentClaudeMdContents, permissionGranterFn, toolUseContext, undefined, { ...loopState, turnCounter: loopState.turnCounter + 1 } ); return; } }

Phase 6: Recursion Control

The tt function is tail-recursive, allowing for unlimited conversation depth (bounded by safeguards):

TSX
// Recursion safeguards if (loopState.turnCounter >= 10) { yield createSystemMessage( "Maximum conversation depth reached. Please start a new query." ); return; } // Memory pressure check before recursion const estimatedMemory = estimateConversationMemory(messagesForLlm); if (estimatedMemory > MEMORY_THRESHOLD) { // Force compaction before continuing const compacted = await forceCompaction(messagesForLlm); messagesForLlm = compacted; }

The Layered Architecture

Claude Code implements a clean layered architecture where each layer has distinct responsibilities:

Layer Communication Patterns

Communication between layers follows strict patterns:

  1. Downward Communication: Direct function calls
  2. Upward Communication: Events and callbacks
  3. Cross-Layer Communication: Shared context objects
TSX
// Example: UI to Agent Core communication class UIToAgentBridge { async handleUserInput(input: string) { // Downward: Direct call const action = await pd(input, this.context); // Process based on action type switch (action.type) { case 'normal_prompt': // Start new tt loop iteration for await (const message of tt(...)) { // Upward: Yield events this.uiRenderer.handleMessage(message); } break; } } } // Example: Tool to UI communication via progress class ToolToUIBridge { async *executeWithProgress(tool: ToolDefinition, input: any) { // Tool yields progress for await (const event of tool.call(input, this.context)) { if (event.type === 'progress') { // Transform to UI event yield { type: 'ui_progress', toolName: tool.name, progress: event.data }; } } } }

Event-Driven & Streaming Architecture

The entire system is built on streaming primitives:

Stream Backpressure Management

TSX
class StreamBackpressureController { private queue: StreamEvent[] = []; private processing = false; private pressure = { high: 1000, // Start dropping non-critical events critical: 5000 // Drop everything except errors }; async handleEvent(event: StreamEvent) { this.queue.push(event); // Apply backpressure strategies if (this.queue.length > this.pressure.critical) { // Keep only critical events this.queue = this.queue.filter(e => e.type === 'error' || e.type === 'message_stop' ); } else if (this.queue.length > this.pressure.high) { // Drop text deltas, keep structure this.queue = this.queue.filter(e => e.type !== 'content_block_delta' || e.delta.type !== 'text_delta' ); } if (!this.processing) { await this.processQueue(); } } private async processQueue() { this.processing = true; while (this.queue.length > 0) { const batch = this.queue.splice(0, 100); // Process in batches await this.processBatch(batch); // Yield to event loop await new Promise(resolve => setImmediate(resolve)); } this.processing = false; } }

Progress Event Aggregation

Multiple concurrent operations need coordinated progress reporting:

TSX
class ProgressAggregator { private progressStreams = new Map<string, AsyncIterator<ProgressEvent>>(); async *aggregateProgress( operations: Array<{ id: string, operation: AsyncIterator<any> }> ): AsyncGenerator<AggregatedProgress> { // Start all operations for (const { id, operation } of operations) { this.progressStreams.set(id, operation); } // Poll all streams while (this.progressStreams.size > 0) { const promises = Array.from(this.progressStreams.entries()).map( async ([id, stream]) => { const { value, done } = await stream.next(); return { id, value, done }; } ); // Race for next event const result = await Promise.race(promises); if (result.done) { this.progressStreams.delete(result.id); } else if (result.value.type === 'progress') { yield { type: 'aggregated_progress', source: result.id, progress: result.value }; } } } }

State Management Architecture

Claude Code uses a pragmatic approach to state management:

The Global Session State

TSX
// Singleton session state with direct mutation class SessionState { private static instance: SessionState; // Core state sessionId: string = crypto.randomUUID(); cwd: string = process.cwd(); totalCostUSD: number = 0; totalAPIDuration: number = 0; // Model usage tracking modelTokens: Record<string, { inputTokens: number; outputTokens: number; cacheReadInputTokens: number; cacheCreationInputTokens: number; }> = {}; // Direct mutation methods incrementCost(amount: number) { this.totalCostUSD += amount; this.persistToDisk(); // Async, non-blocking } updateTokenUsage(model: string, usage: TokenUsage) { if (!this.modelTokens[model]) { this.modelTokens[model] = { inputTokens: 0, outputTokens: 0, cacheReadInputTokens: 0, cacheCreationInputTokens: 0 }; } const tokens = this.modelTokens[model]; tokens.inputTokens += usage.input_tokens || 0; tokens.outputTokens += usage.output_tokens || 0; tokens.cacheReadInputTokens += usage.cache_read_input_tokens || 0; tokens.cacheCreationInputTokens += usage.cache_creation_input_tokens || 0; } private async persistToDisk() { // Debounced write to avoid excessive I/O clearTimeout(this.persistTimer); this.persistTimer = setTimeout(async () => { await fs.writeFile( '.claude/session.json', JSON.stringify(this, null, 2) ); }, 1000); } }

File State with Weak References

TSX
class ReadFileState { private cache = new Map<string, WeakRef<FileContent>>(); private registry = new FinalizationRegistry((path: string) => { // Cleanup when FileContent is garbage collected this.cache.delete(path); }); set(path: string, content: FileContent) { const ref = new WeakRef(content); this.cache.set(path, ref); this.registry.register(content, path); } get(path: string): FileContent | undefined { const ref = this.cache.get(path); if (ref) { const content = ref.deref(); if (!content) { // Content was garbage collected this.cache.delete(path); return undefined; } return content; } } checkFreshness(path: string): 'fresh' | 'stale' | 'unknown' { const cached = this.get(path); if (!cached) return 'unknown'; const stats = fs.statSync(path); if (stats.mtimeMs !== cached.timestamp) { return 'stale'; } return 'fresh'; } }

Security Architecture

Security is implemented through multiple independent layers:

Layer 1: Permission System

TSX
class PermissionEvaluator { private ruleCache = new Map<string, CompiledRule>(); async evaluate( tool: ToolDefinition, input: any, context: ToolPermissionContext ): Promise<PermissionDecision> { // Priority order evaluation const scopes: PermissionRuleScope[] = [ 'cliArg', // Highest: command line 'localSettings', // Project-specific overrides 'projectSettings',// Shared project rules 'policySettings', // Organization policies 'userSettings' // Lowest: user preferences ]; for (const scope of scopes) { const decision = await this.evaluateScope( tool, input, context, scope ); if (decision.behavior !== 'continue') { return decision; } } // No matching rule - ask user return { behavior: 'ask', suggestions: this.generateSuggestions(tool, input) }; } private compileRule(rule: string): CompiledRule { if (this.ruleCache.has(rule)) { return this.ruleCache.get(rule)!; } // Parse rule syntax: ToolName(glob/pattern) const match = rule.match(/^(\\w+)(?:\\((.+)\\))?\$/); if (!match) throw new Error(`Invalid rule: \${rule}`); const [, toolPattern, pathPattern] = match; const compiled = { toolMatcher: new RegExp( `^\${toolPattern.replace('*', '.*')}\$` ), pathMatcher: pathPattern ? picomatch(pathPattern) : null }; this.ruleCache.set(rule, compiled); return compiled; } }

Layer 2: Sandbox Architecture

TSX
// macOS sandbox implementation class MacOSSandboxManager { generateProfile( command: string, restrictions: SandboxRestrictions ): string { const profile = ` (version 1) (deny default) ; Base permissions (allow process-exec (literal "/bin/bash")) (allow process-exec (literal "/usr/bin/env")) ; File system access \${restrictions.allowRead ? '(allow file-read*)' : '(deny file-read*)'} \${restrictions.allowWrite ? '(allow file-write*)' : '(deny file-write*)'} ; Network access \${restrictions.allowNetwork ? ` (allow network-outbound) (allow network-inbound) ` : ` (deny network*) `} ; System operations (allow sysctl-read) (allow mach-lookup) ; Temporary files (allow file-write* (subpath "/tmp")) (allow file-write* (subpath "/var/tmp")) `.trim(); return profile; } async executeSandboxed( command: string, profile: string ): Promise<ExecutionResult> { // Write profile to temporary file const profilePath = await this.writeTemporaryProfile(profile); try { // Execute with sandbox-exec const result = await exec( `sandbox-exec -p '\${profilePath}' \${command}` ); return result; } finally { // Cleanup await fs.unlink(profilePath); } } }

Layer 3: Path Validation

TSX
class PathValidator { private boundaries: Set<string>; private deniedPatterns: RegExp[]; constructor(context: SecurityContext) { this.boundaries = new Set([ context.projectRoot, ...context.additionalWorkingDirectories ]); this.deniedPatterns = [ /\\/\\.(ssh|gnupg)\\//, // SSH/GPG keys /\\/(etc|sys|proc)\\//, // System directories /\\.pem\$|\\.key\$/, // Private keys /\\.(env|envrc)\$/ // Environment files ]; } validate(requestedPath: string): ValidationResult { const absolute = path.resolve(requestedPath); // Check boundaries const inBoundary = Array.from(this.boundaries).some( boundary => absolute.startsWith(boundary) ); if (!inBoundary) { return { allowed: false, reason: 'Path outside allowed directories' }; } // Check denied patterns for (const pattern of this.deniedPatterns) { if (pattern.test(absolute)) { return { allowed: false, reason: `Path matches denied pattern: \${pattern}` }; } } return { allowed: true }; } }

Performance Architecture

ANR (Application Not Responding) Detection

The ANR system uses a worker thread to monitor the main event loop:

TSX
// Worker thread script (embedded as base64) const anrWorkerScript = ` const { parentPort } = require('worker_threads'); let config = { anrThreshold: 5000, captureStackTrace: false }; let lastPing = Date.now(); let anrTimer = null; function checkANR() { const elapsed = Date.now() - lastPing; if (elapsed > config.anrThreshold) { // Main thread is not responding parentPort.postMessage({ type: 'anr', payload: { elapsed, stackTrace: config.captureStackTrace ? captureMainThreadStack() : null } }); } // Schedule next check anrTimer = setTimeout(checkANR, 100); } async function captureMainThreadStack() { // Use inspector protocol if available try { const { Session } = require('inspector'); const session = new Session(); session.connect(); const { result } = await session.post('Debugger.enable'); const stack = await session.post('Debugger.getStackTrace'); session.disconnect(); return stack; } catch (e) { return null; } } parentPort.on('message', (msg) => { if (msg.type === 'config') { config = msg.payload; lastPing = Date.now(); checkANR(); // Start monitoring } else if (msg.type === 'ping') { lastPing = Date.now(); } }); `; // Main thread ANR integration class ANRMonitor { private worker: Worker; private pingInterval: NodeJS.Timer; constructor(options: ANROptions = {}) { // Create worker from embedded script this.worker = new Worker(anrWorkerScript, { eval: true }); // Configure worker this.worker.postMessage({ type: 'config', payload: { anrThreshold: options.threshold || 5000, captureStackTrace: options.captureStackTrace !== false } }); // Start heartbeat this.pingInterval = setInterval(() => { this.worker.postMessage({ type: 'ping' }); }, options.pollInterval || 50); // Handle ANR detection this.worker.on('message', (msg) => { if (msg.type === 'anr') { this.handleANR(msg.payload); } }); } private handleANR(data: ANRData) { // Log to telemetry Sentry.captureException(new Error( `Application not responding for \${data.elapsed}ms` ), { extra: { stackTrace: data.stackTrace, eventLoopDelay: this.getEventLoopDelay() } }); } }

Strategic Caching Layers

TSX
class CacheArchitecture { // L1: In-memory caches private schemaCache = new LRUCache<string, JSONSchema>(100); private patternCache = new LRUCache<string, CompiledPattern>(500); private gitContextCache = new TTLCache<string, GitContext>(30_000); // 30s TTL // L2: Weak reference caches private fileContentCache = new WeakRefCache<FileContent>(); // L3: Disk caches private diskCache = new DiskCache('.claude/cache'); async get<T>( key: string, generator: () => Promise<T>, options: CacheOptions = {} ): Promise<T> { // Check L1 if (this.schemaCache.has(key)) { return this.schemaCache.get(key) as T; } // Check L2 const weakRef = this.fileContentCache.get(key); if (weakRef) { return weakRef as T; } // Check L3 if (options.persistent) { const diskValue = await this.diskCache.get(key); if (diskValue) { return diskValue; } } // Generate and cache const value = await generator(); // Store in appropriate cache if (options.weak) { this.fileContentCache.set(key, value); } else if (options.persistent) { await this.diskCache.set(key, value, options.ttl); } else { this.schemaCache.set(key, value as any); } return value; } }

Telemetry & Observability Design

The three-pillar approach provides comprehensive visibility:

Pillar 1: Error Tracking (Sentry)

TSX
class ErrorBoundary { static wrap<T extends (...args: any[]) => any>( fn: T, context: ErrorContext ): T { return (async (...args: Parameters<T>) => { const span = Sentry.startTransaction({ name: context.operation, op: context.category }); try { const result = await fn(...args); span.setStatus('ok'); return result; } catch (error) { span.setStatus('internal_error'); Sentry.captureException(error, { contexts: { operation: context, state: this.captureState() }, fingerprint: this.generateFingerprint(error, context) }); throw error; } finally { span.finish(); } }) as T; } private static captureState() { return { sessionId: SessionState.instance.sessionId, conversationDepth: /* current depth */, activeTools: /* currently executing */, memoryUsage: process.memoryUsage(), eventLoopDelay: this.getEventLoopDelay() }; } }

Pillar 2: Metrics (OpenTelemetry)

TSX
class MetricsCollector { private meters = { api: meter.createCounter('api_calls_total'), tokens: meter.createHistogram('token_usage'), tools: meter.createHistogram('tool_execution_duration'), streaming: meter.createHistogram('streaming_latency') }; recordApiCall(result: ApiCallResult) { this.meters.api.add(1, { model: result.model, status: result.status, provider: result.provider }); this.meters.tokens.record(result.totalTokens, { model: result.model, type: 'total' }); } recordToolExecution(tool: string, duration: number, success: boolean) { this.meters.tools.record(duration, { tool, success: String(success), concurrent: /* was parallel? */ }); } }

Pillar 3: Feature Flags (Statsig)

TSX
class FeatureManager { async checkGate( gate: string, context?: FeatureContext ): Promise<boolean> { return statsig.checkGate(gate, { userID: SessionState.instance.sessionId, custom: { model: context?.model, toolsEnabled: context?.tools, platform: process.platform } }); } async getConfig<T>( config: string, defaultValue: T ): Promise<T> { const dynamicConfig = statsig.getConfig(config); return dynamicConfig.get('value', defaultValue); } }

Resource Management

Process Lifecycle Management

TSX
class ProcessManager { private processes = new Map<string, ChildProcess>(); private limits = { maxProcesses: 10, maxMemoryPerProcess: 512 * 1024 * 1024, // 512MB maxTotalMemory: 2 * 1024 * 1024 * 1024 // 2GB }; async spawn( id: string, command: string, options: SpawnOptions ): Promise<ManagedProcess> { // Check limits if (this.processes.size >= this.limits.maxProcesses) { await this.killOldestProcess(); } const child = spawn('bash', ['-c', command], { ...options, // Resource limits env: { ...options.env, NODE_OPTIONS: `--max-old-space-size=\${this.limits.maxMemoryPerProcess / 1024 / 1024}` } }); // Monitor resources const monitor = setInterval(() => { this.checkProcessHealth(id, child); }, 1000); this.processes.set(id, child); return new ManagedProcess(child, monitor); } private async checkProcessHealth(id: string, proc: ChildProcess) { try { const usage = await pidusage(proc.pid); if (usage.memory > this.limits.maxMemoryPerProcess) { console.warn(`Process \${id} exceeding memory limit`); proc.kill('SIGTERM'); } } catch (e) { // Process might have exited this.processes.delete(id); } } }

Network Connection Pooling

TSX
class NetworkPool { private pools = new Map<string, ConnectionPool>(); getPool(provider: string): ConnectionPool { if (!this.pools.has(provider)) { this.pools.set(provider, new ConnectionPool({ maxConnections: provider === 'anthropic' ? 10 : 5, maxIdleTime: 30_000, keepAlive: true })); } return this.pools.get(provider)!; } async request( provider: string, options: RequestOptions ): Promise<Response> { const pool = this.getPool(provider); const connection = await pool.acquire(); try { return await connection.request(options); } finally { pool.release(connection); } } }

This architecture analysis is based on reverse engineering and decompilation. The actual implementation may vary. The patterns presented represent inferred architectural decisions based on observable behavior and common practices in high-performance Node.js applications.