Architecture: The Engine Room
The tt Control Loop: The Beating Heart
The entire Claude Code system revolves around a single async generator function called tt. This function orchestrates every interaction, from user input to LLM communication to tool execution. Let's dissect this remarkable piece of engineering:
// The actual tt function signature from the codebase
async function* tt(
currentMessages: CliMessage[], // Full conversation history
baseSystemPromptString: string, // Static system instructions
currentGitContext: GitContext, // Real-time git state
currentClaudeMdContents: ClaudeMdContent[], // Project context
permissionGranterFn: PermissionGranter, // Permission callback
toolUseContext: ToolUseContext, // Shared execution context
activeStreamingToolUse?: ToolUseBlock, // Resume streaming state
loopState: {
turnId: string, // UUID for this turn
turnCounter: number, // Recursion depth tracker
compacted?: boolean, // History compression flag
isResuming?: boolean // Resume from saved state
}
): AsyncGenerator<CliMessage, void, void>
This signature reveals the sophisticated state management at play. The function yields CliMessage objects that drive UI updates while maintaining conversation flow. Let's examine each phase:
Phase 1: Turn Initialization & Context Preparation
{
// Signal UI that processing has begun
yield {
type: "ui_state_update",
uuid: `uistate-\${loopState.turnId}-\${Date.now()}`,
timestamp: new Date().toISOString(),
data: { status: "thinking", turnId: loopState.turnId }
};
// Check context window pressure
let messagesForLlm = currentMessages;
let wasCompactedThisIteration = false;
if (await shouldAutoCompact(currentMessages)) {
yield {
type: "ui_notification",
data: { message: "Context is large, attempting to compact..." }
};
try {
const compactionResult = await compactAndStoreConversation(
currentMessages,
toolUseContext,
true
);
messagesForLlm = compactionResult.messagesAfterCompacting;
wasCompactedThisIteration = true;
loopState.compacted = true;
yield createSystemNotificationMessage(
`Conversation history automatically compacted. Summary: \${
compactionResult.summaryMessage.message.content[0].text
}`
);
} catch (compactionError) {
yield createSystemErrorMessage(
`Failed to compact conversation: \${compactionError.message}`
);
}
}
}
Performance Profile of Phase 1:
| Operation | Typical Duration | Complexity |
|---|---|---|
| Token counting | 10-50ms | O(n) messages |
| Compaction decision | <1ms | O(1) |
| LLM summarization | 2000-3000ms | One LLM call |
| Message reconstruction | 5-10ms | O(n) messages |
Phase 2: Dynamic System Prompt Assembly
The system prompt isn't static—it's assembled fresh for each turn:
{
// Parallel fetch of all context sources
const [toolSpecs, dirStructure] = await Promise.all([
// Convert tool definitions to LLM-compatible specs
Promise.all(
toolUseContext.options.tools
.filter(tool => tool.isEnabled ? tool.isEnabled() : true)
.map(async (tool) => convertToolDefinitionToToolSpecification(tool, toolUseContext))
),
// Get current directory structure
getDirectoryStructureSnapshot(toolUseContext)
]);
// Assemble the complete system prompt
const systemPromptForLlm = assembleSystemPrompt(
baseSystemPromptString, // Core instructions
currentClaudeMdContents, // Project-specific context
currentGitContext, // Git status/branch/commits
dirStructure, // File tree
toolSpecs // Available tools
);
// Prepare messages with cache control
const apiMessages = prepareMessagesForApi(
messagesForLlm,
true // applyEphemeralCacheControl
);
}
The assembly process follows a strict priority order:
Priority 1: Base Instructions (~2KB)
↓
Priority 2: Model-Specific Adaptations (~500B)
↓
Priority 3: CLAUDE.md Content (Variable, typically 5-50KB)
↓
Priority 4: Git Context (~1-5KB)
↓
Priority 5: Directory Structure (Truncated to fit)
↓
Priority 6: Tool Specifications (~10-20KB)
Phase 3: LLM Stream Initialization
{
// Initialize streaming call
const llmStream = callLlmStreamApi(
apiMessages,
systemPromptForLlm,
toolSpecificationsForLlm,
toolUseContext.options.mainLoopModel,
toolUseContext.abortController.signal
);
// Initialize accumulators for streaming response
let accumulatedAssistantMessage: Partial<CliMessage> & {
message: Partial<ApiMessage> & { content: ContentBlock[] }
} = {
type: "assistant",
uuid: `assistant-\${loopState.turnId}-\${loopState.turnCounter}-\${Date.now()}`,
timestamp: new Date().toISOString(),
message: { role: "assistant", content: [] }
};
let currentToolUsesFromLlm: ToolUseBlock[] = [];
let currentThinkingContent: string = "";
let currentToolInputJsonBuffer: string = "";
}
Phase 4: Stream Event Processing State Machine
This is where the magic happens—processing streaming events in real-time:
{
for await (const streamEvent of llmStream) {
// Abort check
if (toolUseContext.abortController.signal.aborted) {
yield createSystemNotificationMessage("LLM stream processing aborted by user.");
return;
}
switch (streamEvent.type) {
case "message_start":
accumulatedAssistantMessage.message.id = streamEvent.message.id;
accumulatedAssistantMessage.message.model = streamEvent.message.model;
accumulatedAssistantMessage.message.usage = streamEvent.message.usage;
yield {
type: "ui_state_update",
data: {
status: "assistant_responding",
model: streamEvent.message.model
}
};
break;
case "content_block_start":
const newBlockPlaceholder = { ...streamEvent.content_block };
// Initialize empty content based on block type
if (streamEvent.content_block.type === "thinking") {
currentThinkingContent = "";
newBlockPlaceholder.thinking = "";
} else if (streamEvent.content_block.type === "tool_use") {
currentToolInputJsonBuffer = "";
newBlockPlaceholder.input = "";
} else if (streamEvent.content_block.type === "text") {
newBlockPlaceholder.text = "";
}
accumulatedAssistantMessage.message.content.push(newBlockPlaceholder);
break;
case "content_block_delta":
const lastBlockIndex = accumulatedAssistantMessage.message.content.length - 1;
if (lastBlockIndex < 0) continue;
const currentBlock = accumulatedAssistantMessage.message.content[lastBlockIndex];
if (streamEvent.delta.type === "text_delta" && currentBlock.type === "text") {
currentBlock.text += streamEvent.delta.text;
yield {
type: "ui_text_delta",
data: {
textDelta: streamEvent.delta.text,
blockIndex: lastBlockIndex
}
};
} else if (streamEvent.delta.type === "input_json_delta" && currentBlock.type === "tool_use") {
currentToolInputJsonBuffer += streamEvent.delta.partial_json;
currentBlock.input = currentToolInputJsonBuffer;
// Try parsing incomplete JSON for preview
const parseAttempt = tryParsePartialJson(currentToolInputJsonBuffer);
if (parseAttempt.complete) {
yield {
type: "ui_tool_preview",
data: {
toolId: currentBlock.id,
preview: parseAttempt.value
}
};
}
}
break;
case "content_block_stop":
const completedBlock = accumulatedAssistantMessage.message.content[streamEvent.index];
if (completedBlock.type === "tool_use") {
try {
const parsedInput = JSON.parse(currentToolInputJsonBuffer);
completedBlock.input = parsedInput;
currentToolUsesFromLlm.push({
type: "tool_use",
id: completedBlock.id,
name: completedBlock.name,
input: parsedInput
});
} catch (e) {
// Handle malformed JSON from LLM
completedBlock.input = {
error: "Invalid JSON input from LLM",
raw_json_string: currentToolInputJsonBuffer,
parse_error: e.message
};
}
currentToolInputJsonBuffer = "";
}
yield {
type: "ui_content_block_complete",
data: { block: completedBlock, blockIndex: streamEvent.index }
};
break;
case "message_stop":
// LLM generation complete
const finalAssistantMessage = finalizeCliMessage(
accumulatedAssistantMessage,
loopState.turnId,
loopState.turnCounter
);
yield finalAssistantMessage;
// Move to Phase 5 or 6...
break;
}
}
}
Stream Processing Performance:
- First token latency: 300-800ms (varies by model)
- Token throughput: 50-100 tokens/second
- UI update frequency: Every token for text, batched for tool inputs
- Memory usage: Constant regardless of response length
Phase 5: Tool Execution Orchestration
When the LLM requests tool use, the architecture shifts into execution mode:
{
if (finalAssistantMessage.message.stop_reason === "tool_use" &&
currentToolUsesFromLlm.length > 0) {
yield { type: "ui_state_update", data: { status: "executing_tools" } };
let toolResultMessages: CliMessage[] = [];
// Process tools with intelligent batching
for await (const toolOutcomeMessage of processToolCallsInParallelBatches(
currentToolUsesFromLlm,
finalAssistantMessage,
permissionGranterFn,
toolUseContext
)) {
yield toolOutcomeMessage;
if (toolOutcomeMessage.type === 'user' && toolOutcomeMessage.isMeta) {
toolResultMessages.push(toolOutcomeMessage);
}
}
// Check for abort during tool execution
if (toolUseContext.abortController.signal.aborted) {
yield createSystemNotificationMessage("Tool execution aborted by user.");
return;
}
// Sort results to match LLM's request order
const sortedToolResultMessages = sortToolResultsByOriginalRequestOrder(
toolResultMessages,
currentToolUsesFromLlm
);
// Phase 6: Recurse with results
yield* tt(
[...messagesForLlm, finalAssistantMessage, ...sortedToolResultMessages],
baseSystemPromptString,
currentGitContext,
currentClaudeMdContents,
permissionGranterFn,
toolUseContext,
undefined,
{ ...loopState, turnCounter: loopState.turnCounter + 1 }
);
return;
}
}
Phase 6: Recursion Control
The tt function is tail-recursive, allowing for unlimited conversation depth (bounded by safeguards):
// Recursion safeguards
if (loopState.turnCounter >= 10) {
yield createSystemMessage(
"Maximum conversation depth reached. Please start a new query."
);
return;
}
// Memory pressure check before recursion
const estimatedMemory = estimateConversationMemory(messagesForLlm);
if (estimatedMemory > MEMORY_THRESHOLD) {
// Force compaction before continuing
const compacted = await forceCompaction(messagesForLlm);
messagesForLlm = compacted;
}
The Layered Architecture
Claude Code implements a clean layered architecture where each layer has distinct responsibilities:
Layer Communication Patterns
Communication between layers follows strict patterns:
- Downward Communication: Direct function calls
- Upward Communication: Events and callbacks
- Cross-Layer Communication: Shared context objects
// Example: UI to Agent Core communication
class UIToAgentBridge {
async handleUserInput(input: string) {
// Downward: Direct call
const action = await pd(input, this.context);
// Process based on action type
switch (action.type) {
case 'normal_prompt':
// Start new tt loop iteration
for await (const message of tt(...)) {
// Upward: Yield events
this.uiRenderer.handleMessage(message);
}
break;
}
}
}
// Example: Tool to UI communication via progress
class ToolToUIBridge {
async *executeWithProgress(tool: ToolDefinition, input: any) {
// Tool yields progress
for await (const event of tool.call(input, this.context)) {
if (event.type === 'progress') {
// Transform to UI event
yield {
type: 'ui_progress',
toolName: tool.name,
progress: event.data
};
}
}
}
}
Event-Driven & Streaming Architecture
The entire system is built on streaming primitives:
Stream Backpressure Management
class StreamBackpressureController {
private queue: StreamEvent[] = [];
private processing = false;
private pressure = {
high: 1000, // Start dropping non-critical events
critical: 5000 // Drop everything except errors
};
async handleEvent(event: StreamEvent) {
this.queue.push(event);
// Apply backpressure strategies
if (this.queue.length > this.pressure.critical) {
// Keep only critical events
this.queue = this.queue.filter(e =>
e.type === 'error' ||
e.type === 'message_stop'
);
} else if (this.queue.length > this.pressure.high) {
// Drop text deltas, keep structure
this.queue = this.queue.filter(e =>
e.type !== 'content_block_delta' ||
e.delta.type !== 'text_delta'
);
}
if (!this.processing) {
await this.processQueue();
}
}
private async processQueue() {
this.processing = true;
while (this.queue.length > 0) {
const batch = this.queue.splice(0, 100); // Process in batches
await this.processBatch(batch);
// Yield to event loop
await new Promise(resolve => setImmediate(resolve));
}
this.processing = false;
}
}
Progress Event Aggregation
Multiple concurrent operations need coordinated progress reporting:
class ProgressAggregator {
private progressStreams = new Map<string, AsyncIterator<ProgressEvent>>();
async *aggregateProgress(
operations: Array<{ id: string, operation: AsyncIterator<any> }>
): AsyncGenerator<AggregatedProgress> {
// Start all operations
for (const { id, operation } of operations) {
this.progressStreams.set(id, operation);
}
// Poll all streams
while (this.progressStreams.size > 0) {
const promises = Array.from(this.progressStreams.entries()).map(
async ([id, stream]) => {
const { value, done } = await stream.next();
return { id, value, done };
}
);
// Race for next event
const result = await Promise.race(promises);
if (result.done) {
this.progressStreams.delete(result.id);
} else if (result.value.type === 'progress') {
yield {
type: 'aggregated_progress',
source: result.id,
progress: result.value
};
}
}
}
}
State Management Architecture
Claude Code uses a pragmatic approach to state management:
The Global Session State
// Singleton session state with direct mutation
class SessionState {
private static instance: SessionState;
// Core state
sessionId: string = crypto.randomUUID();
cwd: string = process.cwd();
totalCostUSD: number = 0;
totalAPIDuration: number = 0;
// Model usage tracking
modelTokens: Record<string, {
inputTokens: number;
outputTokens: number;
cacheReadInputTokens: number;
cacheCreationInputTokens: number;
}> = {};
// Direct mutation methods
incrementCost(amount: number) {
this.totalCostUSD += amount;
this.persistToDisk(); // Async, non-blocking
}
updateTokenUsage(model: string, usage: TokenUsage) {
if (!this.modelTokens[model]) {
this.modelTokens[model] = {
inputTokens: 0,
outputTokens: 0,
cacheReadInputTokens: 0,
cacheCreationInputTokens: 0
};
}
const tokens = this.modelTokens[model];
tokens.inputTokens += usage.input_tokens || 0;
tokens.outputTokens += usage.output_tokens || 0;
tokens.cacheReadInputTokens += usage.cache_read_input_tokens || 0;
tokens.cacheCreationInputTokens += usage.cache_creation_input_tokens || 0;
}
private async persistToDisk() {
// Debounced write to avoid excessive I/O
clearTimeout(this.persistTimer);
this.persistTimer = setTimeout(async () => {
await fs.writeFile(
'.claude/session.json',
JSON.stringify(this, null, 2)
);
}, 1000);
}
}
File State with Weak References
class ReadFileState {
private cache = new Map<string, WeakRef<FileContent>>();
private registry = new FinalizationRegistry((path: string) => {
// Cleanup when FileContent is garbage collected
this.cache.delete(path);
});
set(path: string, content: FileContent) {
const ref = new WeakRef(content);
this.cache.set(path, ref);
this.registry.register(content, path);
}
get(path: string): FileContent | undefined {
const ref = this.cache.get(path);
if (ref) {
const content = ref.deref();
if (!content) {
// Content was garbage collected
this.cache.delete(path);
return undefined;
}
return content;
}
}
checkFreshness(path: string): 'fresh' | 'stale' | 'unknown' {
const cached = this.get(path);
if (!cached) return 'unknown';
const stats = fs.statSync(path);
if (stats.mtimeMs !== cached.timestamp) {
return 'stale';
}
return 'fresh';
}
}
Security Architecture
Security is implemented through multiple independent layers:
Layer 1: Permission System
class PermissionEvaluator {
private ruleCache = new Map<string, CompiledRule>();
async evaluate(
tool: ToolDefinition,
input: any,
context: ToolPermissionContext
): Promise<PermissionDecision> {
// Priority order evaluation
const scopes: PermissionRuleScope[] = [
'cliArg', // Highest: command line
'localSettings', // Project-specific overrides
'projectSettings',// Shared project rules
'policySettings', // Organization policies
'userSettings' // Lowest: user preferences
];
for (const scope of scopes) {
const decision = await this.evaluateScope(
tool, input, context, scope
);
if (decision.behavior !== 'continue') {
return decision;
}
}
// No matching rule - ask user
return {
behavior: 'ask',
suggestions: this.generateSuggestions(tool, input)
};
}
private compileRule(rule: string): CompiledRule {
if (this.ruleCache.has(rule)) {
return this.ruleCache.get(rule)!;
}
// Parse rule syntax: ToolName(glob/pattern)
const match = rule.match(/^(\\w+)(?:\\((.+)\\))?\$/);
if (!match) throw new Error(`Invalid rule: \${rule}`);
const [, toolPattern, pathPattern] = match;
const compiled = {
toolMatcher: new RegExp(
`^\${toolPattern.replace('*', '.*')}\$`
),
pathMatcher: pathPattern
? picomatch(pathPattern)
: null
};
this.ruleCache.set(rule, compiled);
return compiled;
}
}
Layer 2: Sandbox Architecture
// macOS sandbox implementation
class MacOSSandboxManager {
generateProfile(
command: string,
restrictions: SandboxRestrictions
): string {
const profile = `
(version 1)
(deny default)
; Base permissions
(allow process-exec (literal "/bin/bash"))
(allow process-exec (literal "/usr/bin/env"))
; File system access
\${restrictions.allowRead ? '(allow file-read*)' : '(deny file-read*)'}
\${restrictions.allowWrite ? '(allow file-write*)' : '(deny file-write*)'}
; Network access
\${restrictions.allowNetwork ? `
(allow network-outbound)
(allow network-inbound)
` : `
(deny network*)
`}
; System operations
(allow sysctl-read)
(allow mach-lookup)
; Temporary files
(allow file-write* (subpath "/tmp"))
(allow file-write* (subpath "/var/tmp"))
`.trim();
return profile;
}
async executeSandboxed(
command: string,
profile: string
): Promise<ExecutionResult> {
// Write profile to temporary file
const profilePath = await this.writeTemporaryProfile(profile);
try {
// Execute with sandbox-exec
const result = await exec(
`sandbox-exec -p '\${profilePath}' \${command}`
);
return result;
} finally {
// Cleanup
await fs.unlink(profilePath);
}
}
}
Layer 3: Path Validation
class PathValidator {
private boundaries: Set<string>;
private deniedPatterns: RegExp[];
constructor(context: SecurityContext) {
this.boundaries = new Set([
context.projectRoot,
...context.additionalWorkingDirectories
]);
this.deniedPatterns = [
/\\/\\.(ssh|gnupg)\\//, // SSH/GPG keys
/\\/(etc|sys|proc)\\//, // System directories
/\\.pem\$|\\.key\$/, // Private keys
/\\.(env|envrc)\$/ // Environment files
];
}
validate(requestedPath: string): ValidationResult {
const absolute = path.resolve(requestedPath);
// Check boundaries
const inBoundary = Array.from(this.boundaries).some(
boundary => absolute.startsWith(boundary)
);
if (!inBoundary) {
return {
allowed: false,
reason: 'Path outside allowed directories'
};
}
// Check denied patterns
for (const pattern of this.deniedPatterns) {
if (pattern.test(absolute)) {
return {
allowed: false,
reason: `Path matches denied pattern: \${pattern}`
};
}
}
return { allowed: true };
}
}
Performance Architecture
ANR (Application Not Responding) Detection
The ANR system uses a worker thread to monitor the main event loop:
// Worker thread script (embedded as base64)
const anrWorkerScript = `
const { parentPort } = require('worker_threads');
let config = { anrThreshold: 5000, captureStackTrace: false };
let lastPing = Date.now();
let anrTimer = null;
function checkANR() {
const elapsed = Date.now() - lastPing;
if (elapsed > config.anrThreshold) {
// Main thread is not responding
parentPort.postMessage({
type: 'anr',
payload: {
elapsed,
stackTrace: config.captureStackTrace
? captureMainThreadStack()
: null
}
});
}
// Schedule next check
anrTimer = setTimeout(checkANR, 100);
}
async function captureMainThreadStack() {
// Use inspector protocol if available
try {
const { Session } = require('inspector');
const session = new Session();
session.connect();
const { result } = await session.post('Debugger.enable');
const stack = await session.post('Debugger.getStackTrace');
session.disconnect();
return stack;
} catch (e) {
return null;
}
}
parentPort.on('message', (msg) => {
if (msg.type === 'config') {
config = msg.payload;
lastPing = Date.now();
checkANR(); // Start monitoring
} else if (msg.type === 'ping') {
lastPing = Date.now();
}
});
`;
// Main thread ANR integration
class ANRMonitor {
private worker: Worker;
private pingInterval: NodeJS.Timer;
constructor(options: ANROptions = {}) {
// Create worker from embedded script
this.worker = new Worker(anrWorkerScript, { eval: true });
// Configure worker
this.worker.postMessage({
type: 'config',
payload: {
anrThreshold: options.threshold || 5000,
captureStackTrace: options.captureStackTrace !== false
}
});
// Start heartbeat
this.pingInterval = setInterval(() => {
this.worker.postMessage({ type: 'ping' });
}, options.pollInterval || 50);
// Handle ANR detection
this.worker.on('message', (msg) => {
if (msg.type === 'anr') {
this.handleANR(msg.payload);
}
});
}
private handleANR(data: ANRData) {
// Log to telemetry
Sentry.captureException(new Error(
`Application not responding for \${data.elapsed}ms`
), {
extra: {
stackTrace: data.stackTrace,
eventLoopDelay: this.getEventLoopDelay()
}
});
}
}
Strategic Caching Layers
class CacheArchitecture {
// L1: In-memory caches
private schemaCache = new LRUCache<string, JSONSchema>(100);
private patternCache = new LRUCache<string, CompiledPattern>(500);
private gitContextCache = new TTLCache<string, GitContext>(30_000); // 30s TTL
// L2: Weak reference caches
private fileContentCache = new WeakRefCache<FileContent>();
// L3: Disk caches
private diskCache = new DiskCache('.claude/cache');
async get<T>(
key: string,
generator: () => Promise<T>,
options: CacheOptions = {}
): Promise<T> {
// Check L1
if (this.schemaCache.has(key)) {
return this.schemaCache.get(key) as T;
}
// Check L2
const weakRef = this.fileContentCache.get(key);
if (weakRef) {
return weakRef as T;
}
// Check L3
if (options.persistent) {
const diskValue = await this.diskCache.get(key);
if (diskValue) {
return diskValue;
}
}
// Generate and cache
const value = await generator();
// Store in appropriate cache
if (options.weak) {
this.fileContentCache.set(key, value);
} else if (options.persistent) {
await this.diskCache.set(key, value, options.ttl);
} else {
this.schemaCache.set(key, value as any);
}
return value;
}
}
Telemetry & Observability Design
The three-pillar approach provides comprehensive visibility:
Pillar 1: Error Tracking (Sentry)
class ErrorBoundary {
static wrap<T extends (...args: any[]) => any>(
fn: T,
context: ErrorContext
): T {
return (async (...args: Parameters<T>) => {
const span = Sentry.startTransaction({
name: context.operation,
op: context.category
});
try {
const result = await fn(...args);
span.setStatus('ok');
return result;
} catch (error) {
span.setStatus('internal_error');
Sentry.captureException(error, {
contexts: {
operation: context,
state: this.captureState()
},
fingerprint: this.generateFingerprint(error, context)
});
throw error;
} finally {
span.finish();
}
}) as T;
}
private static captureState() {
return {
sessionId: SessionState.instance.sessionId,
conversationDepth: /* current depth */,
activeTools: /* currently executing */,
memoryUsage: process.memoryUsage(),
eventLoopDelay: this.getEventLoopDelay()
};
}
}
Pillar 2: Metrics (OpenTelemetry)
class MetricsCollector {
private meters = {
api: meter.createCounter('api_calls_total'),
tokens: meter.createHistogram('token_usage'),
tools: meter.createHistogram('tool_execution_duration'),
streaming: meter.createHistogram('streaming_latency')
};
recordApiCall(result: ApiCallResult) {
this.meters.api.add(1, {
model: result.model,
status: result.status,
provider: result.provider
});
this.meters.tokens.record(result.totalTokens, {
model: result.model,
type: 'total'
});
}
recordToolExecution(tool: string, duration: number, success: boolean) {
this.meters.tools.record(duration, {
tool,
success: String(success),
concurrent: /* was parallel? */
});
}
}
Pillar 3: Feature Flags (Statsig)
class FeatureManager {
async checkGate(
gate: string,
context?: FeatureContext
): Promise<boolean> {
return statsig.checkGate(gate, {
userID: SessionState.instance.sessionId,
custom: {
model: context?.model,
toolsEnabled: context?.tools,
platform: process.platform
}
});
}
async getConfig<T>(
config: string,
defaultValue: T
): Promise<T> {
const dynamicConfig = statsig.getConfig(config);
return dynamicConfig.get('value', defaultValue);
}
}
Resource Management
Process Lifecycle Management
class ProcessManager {
private processes = new Map<string, ChildProcess>();
private limits = {
maxProcesses: 10,
maxMemoryPerProcess: 512 * 1024 * 1024, // 512MB
maxTotalMemory: 2 * 1024 * 1024 * 1024 // 2GB
};
async spawn(
id: string,
command: string,
options: SpawnOptions
): Promise<ManagedProcess> {
// Check limits
if (this.processes.size >= this.limits.maxProcesses) {
await this.killOldestProcess();
}
const child = spawn('bash', ['-c', command], {
...options,
// Resource limits
env: {
...options.env,
NODE_OPTIONS: `--max-old-space-size=\${this.limits.maxMemoryPerProcess / 1024 / 1024}`
}
});
// Monitor resources
const monitor = setInterval(() => {
this.checkProcessHealth(id, child);
}, 1000);
this.processes.set(id, child);
return new ManagedProcess(child, monitor);
}
private async checkProcessHealth(id: string, proc: ChildProcess) {
try {
const usage = await pidusage(proc.pid);
if (usage.memory > this.limits.maxMemoryPerProcess) {
console.warn(`Process \${id} exceeding memory limit`);
proc.kill('SIGTERM');
}
} catch (e) {
// Process might have exited
this.processes.delete(id);
}
}
}
Network Connection Pooling
class NetworkPool {
private pools = new Map<string, ConnectionPool>();
getPool(provider: string): ConnectionPool {
if (!this.pools.has(provider)) {
this.pools.set(provider, new ConnectionPool({
maxConnections: provider === 'anthropic' ? 10 : 5,
maxIdleTime: 30_000,
keepAlive: true
}));
}
return this.pools.get(provider)!;
}
async request(
provider: string,
options: RequestOptions
): Promise<Response> {
const pool = this.getPool(provider);
const connection = await pool.acquire();
try {
return await connection.request(options);
} finally {
pool.release(connection);
}
}
}
This architecture analysis is based on reverse engineering and decompilation. The actual implementation may vary. The patterns presented represent inferred architectural decisions based on observable behavior and common practices in high-performance Node.js applications.